Home¡¡||¡¡About Us¡¡||¡¡News¡¡||¡¡Tabloid¡¡||¡¡Academic Exchanges¡¡||¡¡Equipment information¡¡||¡¡Chinese  
news search
¡¡
NEW10
1 ¡¡Holographic message&
2 ¡¡From Earth to&n
3 ¡¡Team demonstrates&nb
4 ¡¡New carbon-based&nbs
5 ¡¡Terahertz spatiotemp
6 ¡¡New type of&nbs
7 ¡¡Physicist advancing&
8 ¡¡Harnessing light-pow
9 ¡¡High-sensitivity ter
10 ¡¡Probing for THz
TOP10 click no.
¡¡2009 Conference  121413
¡¡2008 Conference  119592
¡¡Researchers take&nbs 23395
¡¡2014 Conference  20446
¡¡The Research Ac 15393
¡¡The rise of&nbs 13773
¡¡Terahertz Near-Field 13291
¡¡THz Wave Photon 12383
¡¡2014 Conference  10736
¡¡2015 Conference  9498
     news center
Flexible Material May Transform Optics
date£º2013-06-24 08:50:59 Click No.£º1864

Source:thznetwork.net£»

New ultrathin, planar, lightweight and broadband polarimetric photonic devices and optics could result from recent research by a team of Los Alamos National Laboratory scientists. The advances would boost security screening systems, infrared thermal cameras, energy harvesting and radar systems.

Members of the metamaterials team, from left: Nathaniel Grady, Hou-Tong Chen, Jane Heyes. Image: Los Alamos National Laboratory

This development is a key step toward replacing bulky conventional optics with flexible sheets that are about the thickness of a human hair and weighing a fraction of an ounce. The advance is in the design of artificially created materials, called metamaterials, which give scientists new levels of control over light wavelengths.

The research was reported online in Science magazine. The team demonstrated broadband, high-performance linear polarization conversion using ultrathin planar metamaterials, enabling possible applications in the terahertz (THz) frequency regime. Their design can be scaled to other frequency ranges from the microwave through infrared.

Polarization is one of the basic properties of electromagnetic waves, describing the direction of the electric field oscillation, and thus conveying valuable information in signal transmission and sensitive measurements.

¡°Conventional methods for advanced polarization control impose very demanding requirements on material properties and fabrication methods, but they attain only limited performance,¡± says Hou-Tong Chen, the senior researcher on the project.

Metamaterial-based polarimetric devices are particularly attractive in the terahertz frequency range due to the lack of suitable natural materials for THz applications. Currently available designs suffer from either very limited bandwidth or high losses. The Los Alamos designs further enable the near-perfect realization of the generalized laws of reflection/refraction. According to the researchers, this can be exploited to make flat lenses, prisms and other optical elements in a fashion very different from the curved, conventional designs that we use in our daily life.

 
 

Print | close

Copyright© 2006-2007 www.thznetwork.org.cn All Rights Reserved
No.3, Gaopeng Rd, Hi-tech Development Zone, Chengdu, Sichuan, P.R.China, 610041